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Abstract 
   
This thesis used vortex lattice lifting line theory to model an axisymmetrical-ducted propeller 
with no gap between the duct and the propeller.  The theory required to model the duct and its 
interaction with the propeller were discussed and implemented in Open-source Propeller Design 
and Analysis Program (OpenProp).  Two routines for determining the optimum circulation 
distribution were considered, and a method based on calculus of variations was selected.  The 
results of this model were compared with the MIT Propeller Lifting Line Program (PLL) output 
for the purpose of validation.  
 
Ducted propellers are prevalent in modern marine propulsion systems, and the application of this 
technology continues to expand.  The theory associated with ducted propellers applies to a wide-
range of devices which include azimuth thrusters, pumpjets, and tidal turbines.  Regardless of the 
application, engineers need tools such as OpenProp to design these devices for their expected 
operating conditions.  OpenProp is an open source MATLAB®-based suite of propeller 
numerical design tools.  Previously, the program only designed open propellers.  The code 
developed in this thesis extended OpenProp’s capability to be able to design a propeller within 
an axisymmetrical duct.   
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1. Introduction 

 

Ducted propellers are widely used in marine propulsion systems for a variety of reasons.  As 

shown by Kort in 1934, ducted propellers can achieve higher efficiency particularly in slow, 

heavily loaded applications such as tugboats and ocean platforms.  While this efficiency gain is 

lost at higher speeds due to the viscous drag from the duct, there are many more reasons that a 

designer might choose a ducted propeller or derivative such as a pump jet or water jet instead of 

a traditional open propeller.  Several of these reasons are listed below.   

 

- Greater power density.  A ducted propeller can produce more thrust than an open 

propeller of the same size.  If ship geometry limits the size of the propulsor, a ducted 

propeller might be the best option. 

- Physical protection.  A duct provides protection for the propeller blades. 

- Cavitation reduction.  As described below, a decelerating duct can be used to increase 

the static pressure at the propeller which reduces or eliminates cavitation.  

- Simplicity.  Because ducted propulsors often incorporate directional control (vectored 

thrust via a trainable duct, steerable nozzle, ect), rudders can be eliminated.   

- Expanded operational environment.  Because the duct provides protection and can 

reduce or eliminate other appendages such as a rudder, ducted propellers can improve 

shallow water operation.  This is especially true for a water jet since only the inlet 

must be submerged for proper operation.  

 

Another promising use of ducted propeller technology is the tidal turbine market.  With the 

world looking increasingly towards renewable energy sources, harnessing the power of the ocean 

is of great interest and importance.  Development of tidal turbines directly leverages the research 

associated with ducted propellers.  The geometries of both problems are essentially the same, and 

the design process of each involve an optimization involving thrust and torque.  For ducted 

propulsors, the goal is provide a certain amount of thrust while minimizing the required torque a 

ship’s engines must provide through a shaft or electric motor.  The optimization is essentially 

reversed for a tidal turbine that extracts power from the ocean via a turbine generator.  In this 

case, the designer desires to maximize torque and minimize thrust.  While this thesis develops 
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the design tool for a traditional ducted propeller, the concepts and most of the code are directly 

applicable to tidal turbines. 

 

Ducted propellers and associated derivatives (electric drive, pods, azimuth thrusters, water jets, 

pumpjets, etc) will continue to play an important role in ship propulsion and will have an 

expanding role in renewable energy efforts as described above.  For this reason, engineers need 

tools to design the devices for specific operating conditions.   

 

Following the approach presented by Coney in (1), this thesis developed the MATLAB® 

algorithms necessary to model a duct and its interactions with a propeller.  These algorithms 

were then integrated into the existing OpenProp propeller design program.  The model assumed 

that there was no gap between the duct and propeller.  The duct was represented by an image 

system of vorticity and a system of ring vorticies at the radius of the duct cylinder (Figure 1-1).   

 

 

 

 

 

 

 

 

 

 

 

 

 

             

 

 
Figure 1-1: Ducted propeller and associated vortex system representation from Coney (1) 
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The image system modeled the nonaxisymmetric effect of the duct while the ring vorticies 

provided an estimate of the resulting duct force.  The influence functions calculated for the radial 

lifting line control points included the effects from the duct image system, and the inflow was 

modified by the effect of the duct ring vorticies.  A variational optimization routine was 

employed to determine the optimum circulation distribution for the lifting line.  The model 

accounted for viscous drag but duct thickness was neglected.   To the greatest extent possible, 

this thesis used the notation presented in (1). 
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2. Overview of the Propeller Design code: OpenProp 

 

Open-source Propeller Design and Analysis Program (OpenProp)1 is an open source 

MATLAB®-based suite of propeller numerical design tools.  This program is an enhanced 

version of the MIT Propeller Vortex Lattice Lifting Line Program (PVL) developed by Professor 

Justin Kerwin at MIT in 2001.  OpenProp v1.0, originally titled MPVL, was written in 2007 by 

Hsin-Lung Chung and Kate D’Epagnier and is described in detail in (2) and (3).  Two of its main 

improvements versus PVL are its intuitive graphical user interfaces (GUIs) and greatly improved 

data visualization which includes graphic output and three-dimensional renderings. 

 

OpenProp was designed to perform two primary tasks: parametric analysis and single propeller 

design.  Both tasks begin with a desired operating condition defined primarily by the required 

thrust, ship speed, and inflow profile.  The parametric analysis produces efficiency diagrams for 

all possible combinations of number of blades, propeller speed, and propeller diameter for ranges 

and increments entered by the user.  The efficiency diagrams are then used to determine the 

optimum propeller parameters for the desired operating conditions given any constraints (e.g. 

propeller speed or diameter) specified by the user.  Figure 2-1 shows the input GUI for the 

parametric analysis routine, and Figure 2-2 shows the efficiency diagrams produced by that 

routine.   

 

                                                 
1 Throughout this thesis, OpenProp refers to the design program in general.  OpenProp v1.0 (version 1.0) refers to 
the original version of OpenProp which was developed for open propellers only, and OpenProp v2.0 refers to the 
version associated with this thesis which includes the capability to model ducted propellers. 
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Figure 2-1: OpenProp’s parametric analysis input GUI 

 

 
Figure 2-2: Efficiency diagrams produced by OpenProp’s parametric analysis 

  



13 
 

The single propeller design routine produces a complete propeller design for the desired 

operating condition and defined propeller parameters (number of blades, propeller speed, 

propeller diameter, hub diameter, etc).  Figure 2-3 shows the input GUI for the single propeller 

design routine.  OpenProp’s graphical out of key propeller parametersFigure 2-4 shows the 

graphical output of key propeller parameters, and Figure 2-5 shows blade profiles and complete 

three-dimensional representation of the propeller.        

 

 

 
Figure 2-3: OpenProp’s single propeller design input GUI 
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Figure 2-4: OpenProp’s graphical out of key propeller parameters 

 

 

 
Figure 2-5: Blade and propeller representations from OpenProp 
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OpenProp was developed to serve as an open source code for propeller design.  While it is 

currently a tool that is only used in the initial design phase, it is a base program that can be 

continually expanded to perform detailed design and analysis of sophisticated marine propulsors 

and turbines.  Extending OpenProp to include a duct was the main focus of this thesis.   
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3. Theoretical Foundation 

3.1 Ducted Propeller Theory 

Ducted propellers are generally divided into two types: accelerating and decelerating nozzles.  

The accelerating duct or “Kort” nozzle has been widely used since Kort showed in 1934 that this 

type of duct produces a positive thrust and can increase efficiency in heavily loaded applications 

such as tugboats.  It was also shown that the optimum diameter for a ducted propeller is smaller 

than that for an open propeller.  Because of this, accelerating ducts are sometimes used when 

increased thrust is needed from a propeller whose size is constrained by the ship’s characteristics 

or operating conditions.   

 

A decelerating duct increases the static pressure at the propeller and is used to reduce cavitation.  

A reduction in cavitation lowers the noise generated by a propeller and reduces erosion of the 

blades.   

 

From momentum theory, the ideal efficiency, , of a ducted propeller is given in Equation 3-1 

where  is the thrust ratio (Equation 3-2),  is the thrust coefficient (Equation 3-3), ρ is the fluid 

density, VS is the ship speed, and D is the propeller diameter (4). 

 
2

1 1
 

3-1 
 

 
  

3-2 
   

1
2 4

 

3-3 
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As the thrust ratio is lowered, the duct produces more of the required total thrust and the ideal 

efficiency increases.  However, when finite blade effects are considered a penalty is paid for the 

increased axial velocity at the propeller plane and efficiency decreases after reaching a maximum 

at approximately 0.9 (1).  Additionally, since the thrust ratio is multiplied by the thrust 

coefficient, a large thrust coefficient is required in order to realize a significant efficiency gain.  

Hence, ducted propellers are commonly used in heavily loaded situations such as tugboats.    

 

As introduced above, this thesis modeled the duct as an infinite cylinder by adding an image 

vortex system to the vortex lattice representing the lifting line and adding a system of ring 

vortices to account for duct forces and the axisymmetric mean inflow modification by the duct.  

Figure 3-1 shows the ducted propeller vortex system used by Coney and implemented in 

OpenProp.   The propeller coordinate system2 is shown in the lower left-hand corner of Figure 

3-1.   

 

 
 

Figure 3-1: Diagram of the ducted propeller vortex system from Coney (1) 
 

                                                 
2 The propeller coordinate system used in OpenProp and this thesis has positive x in the downstream direction. 
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The image system method was essentially the same as the method used originally in OpenProp to 

model the hub.   The underlying assumption here was that the image system will approximately 

satisfy the condition of zero radial velocity at the cylinder.  The image system used a constant 

pitch angle based on the tip trailing vortex on the lifting line.     

The radii of the image vortices and their associated tan  were determined using Equations 3-4 

and 3-5 where   is the radius of the duct image shed vortex trailer,  is the radius of the duct 

cylinder,  is the radius of the helical trailing vortex shed by the lifting line,  is the 

hydrodynamic pitch angle, and the subscript “ " refers to the  or last shed vortex trailer on 

the lifting line. 

 

 
3-4 

 

  

3-5 
 

 

The radial and tangential influence functions from the duct image were added to the radial lifting 

line influence functions as follows: 

 

, , ,   

3-6 
 

, , ,   

3-7 
 

These influence functions were used in the variational optimization routine described below to 

determine the optimum circulation distribution for ducted propellers. 

 

As the gap between the duct and propeller tip is decreased, the optimum circulation distribution 

becomes more tip loaded.  At the limiting case of zero tip gap, the circulation reaches its 

maximum value at the tip.  Figure 3-2 shows the OpenProp v2 and PLL results for the optimum 



19 
 

circulation distribution for neutrally loaded ( 1.0) ducted propellers ( 1.2, 0.6) 

represented by a duct image system.  The OpenProp v2 results were essentially identical to those 

obtained from PLL.   

 
Figure 3-2: Optimum circulation distributions for ducted and open propellers 

 

In (1), Coney compared the duct image method with a more sophisticated panel method 

representation of the duct and determined that the optimum circulation distribution agreed very 

well.  Since a panel method would be too computationally intensive for an early stage design tool 

such as OpenProp, the results were extremely fortuitous.  Coney’s results (1) are shown in Figure 

3-3.       
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Figure 3-3: Optimization circulation distribution for a zero gap ducted propeller as determined from image 
and panel representations of the duct from Coney (1). 

 

The ring vortex system was used to estimate the duct force and the mean modification of the 

inflow at the propeller lifting line.  The length of the system represented the duct chord length, 

, which was chosen to be equal to the propeller radius, .  The ring vortices of the system were 

spaced (∆ ) evenly at approximately the same constant interval used to discretize the lifting line.  

Furthermore, the system was positioned such that the lifting line was located at the duct mid-

chord and between ring vortices.  The strengths of ring vorticies were calculated to represent a 

NACA a=0.8 meanline over the length of the duct.  

 

The axial component of the velocity that the ring vortex system induced on the lifting line is 

shown in Equation 3-8 where  is the number of ring vortices used to represent the duct.  Γ  is 

the strength of the  ring vortex.  ,  is the velocity induced by the  vortex ring of 

unit strength on the  propeller lifting line control point.  The algorithm used to calculate the 

induced velocities from the vortex rings is discussed in the next section. 
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, Γ n  

3-8 
 

 

The axial force on each vortex ring was calculating by using the Kutta-Joukowski law.  As 

shown in Equation 3-9, the total thrust, , on the duct was calculated by summing the axial 

forces on the vortex rings and adding a viscous drag by using a two-dimensional airfoil sectional 

drag coefficient, C .   

 

2 , Γ n , c C ∆  

3-9 
 

Here,  and  are the radial and axial inflow velocities, respectively, at the duct 

radius, .   ,  and ,  are the radial and axial components of the circumferential 

mean velocity induced on the  ring vortex by the propeller.  Calculation of the circumferential 

mean velocities is discussed below.   

 

The theory above was implemented in OpenProp v2 using two new MATLAB® functions, 

ductVort.m  and ductThrust.m (Appendix A).  ductVort.m was used to determine the vortex ring 

system that represented the duct and to calculate the induced velocity on the lifting line from that 

system.  ductThrust.m was used to calculate the total duct thrust coefficient derived from 

equation 3-9 that was required in the optimization routine discussed below.  It also scaled the 

duct vortex ring system circulation so that the duct provides the thrust specified by the thrust 

ratio.   
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3.2 Vortex Ring Theory and Algorithm 

 

OpenProp uses vortex rings to model the duct’s axisymmetric mean modification of the inflow 

to the propeller and to calculate the thrust provided by the duct.  A vortex ring is a vortex 

filament that forms a circle of radius .  Applying the Biot-Savart law, Kuchemann and Weber 

(5) derived the influence from a vortex ring in terms of complete elliptic integrals, K(k) and E(k).  

K(k) denotes the complete elliptic integral of the first kind, and E(k) denotes the complete elliptic 

integral of the second kind.  The argument, k, is known as the modulus. 

 

As derived, the vortex ring is in the Y-Z plane and is located at 0.  Due to the inherent 

symmetry of a ring, all points contained on a circle in the Y-Z have the same induced velocity.  

Therefore, Kuchemann and Weber derived equations for the axial and radial components of a 

vortex ring with radius and strength Γ  for a point located on a circle of radius R in a plane X 

units from and parallel to the Y-Z plane.  Additionally, the center of the circle is on the x-axis.  

The axial induced velocity is given in Equation 3-10 with the arguments and variables shown in 

Equations 3-11 and 3-12.  The radial induced velocity is given in Equation 3-13. 

 

  

,
Γ

2
1

1
1

2 1
1  

3-10 
 

 
4

1  

3-11 
 

  

  ,            

3-12 
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,
Γ

2 1
1

2
1  

3-13 
 

 

For OpenProp, these equations were implemented in a function named vRing.m (Appendix A).  

vRing.m was successfully validated using Tables 1 and 2 contained in (6).  vpfDuct.m (Appendix 

A) is a velocity prediction function for a duct modeled only with vortex rings (i.e. no thickness).  

A future improvement will include source rings to model duct thickness.         

 

MATLAB® contains a defined function, ELLIPKE, for calculating the elliptic integrals of the 

first and second kind.  However, the argument for this function is not the modulus, k.  Instead, 

ELLIPKE uses m which is known as the parameter.  The modulus, m, is related to the parameter, 

k, as shown in Equation 3-14. 

 

 
3-14 

 

The induced velocity can be calculated at any location except a point on the vortex ring (i.e. the 

velocity a vortex ring induces on itself).  Future versions of OpenProp may require the duct 

algorithm to calculate the velocity a vortex ring induces on itself.  Two options were explored to 

overcome this singularity problem.   

 

First, the average of the induced velocity of selected locations on a sphere surrounding a point on 

the vortex ring was calculated.  This was done for consecutively smaller spheres.  The result did 

not converge, but rather grew without bound as the sphere size was reduced. 

 

The second attempt to overcome the singularity problem consisted of discretizing the vortex ring 

into vortex filaments.  The influence of each vortex filament on the desired point was summed.  

The vortex filament that contained the desired point was not included in this summation as it was 

assumed that the point was on this filament, and it is well know that there is no influence on any 



24 
 

point collinear with a vortex filament.  This method also failed to converge.  As the discretation 

increased, so did the resulting induced velocity.   
 

Table 1 gives the result for the self-induced axial velocity of a vortex ring of unit radius and 

strength.         

 

Discretation Axial Induced Velocity

101 0.2256 

102 0.4072 

103 0.5904 

104 0.7737 

105 0.9569 

106 1.1401 

107 1.3234 

108 Not Enough Memory 
 

Table 1: Vortex Ring Self-Induced Axial Velocity 
 

The failure to overcome this singularity did not affect the duct algorithm used in OpenProp v2.0 

because the self-influence of a ring vortex3 is not required.  If it is required in a future version, 

the error can be mitigated by increasing the discretation of the duct (i.e. the number of vortex 

rings used to model the duct is increased).   

 

 

 

                                                 
3 Real vortices do not have this singularity problem because of their viscous core dissipation. 
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3.3 Circumferential Mean Velocity 

 

When a propulsor includes more than one component, it becomes necessary to calculate the 

velocities that one component induces on another.  For rotating components such as the 

propeller, the time-averaged induced velocities are used and are equal to the circumferential 

mean velocities calculated in the rotating reference frame of the component.  Formulas for 

calculating the tangential, axial, and radial induced velocities induced from a horseshoe vortex 

are presented below.  The formulas are derived from Coney (1) and Hough and Ordway (7), and 

the notation most closely matches Coney (1). 

 

From Kelvin’s theorem, Equation 3-15 gives the tangential circumferential mean velocity, , 

induced on a control point at radius   of another component from a horseshoe vortex of 

strength Γwith lattice points at radii 1  and .  Equation 3-16 defines the parameter S  

which directly relates to whether or not the control point is in the slipstream.   is the axial 

distance from the horseshoe vortex lattice point to the control point with positive  being in the 

downstream (i.e. positive x-axis) direction.  

 

,

0,
0,

Γ
2 ,

           0,             ∞ ∞
            0,                    0   
          0,                             0 

 

3-15 
 

 

1  
3-16 

 

 

That is, the tangential velocity vanishes everywhere outside of the slipstream of the horseshoe 

vortex and is proportional to Γ /  inside the slipstream.  The tangential circumferential 

mean velocity induced by both the bound and trailing vorticity can be found from the above 

equations. 
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The bound vortices on a radial lifting line only induce tangential circumferential mean velocities.  

The axial and radial circumferential mean velocities induced from the trailing vortices must now 

be calculated.  Hough and Ordway (7) used Fourier analysis to derive formulas for the induced 

velocities in terms of the Heuman Lambda function and Legendre functions of the second kind 

and half integer order.  As Coney noted in (1), these can be thought of as the velocities induced 

by a propeller with an infinite number of blades, and since the circumferential mean velocities 

are the average of the sum of local induced velocities along a circle, Equations 3-17 and 3-18 can 

be applied to calculate the axial and radial circumferential mean velocities.  The constant C1  is 

defined in Equation 3-19 where  are the Lengendre functions of the second kind and half 

integer order and Λ ,  is the Heuman’s Lambda function with the amplitude, φ, and 

modulus, κ, as the arguments.  The arguments for the Legendre and Heuman Lambda functions 

are given in Equations 3-20, 3-21, and 3-22.   

 

, Γ
tan p

 

 3-17 
 

, Γ  

3-18 
 

1
2

1
2 2

Λ0 , ,

2
1
2 2

Λ0 , ,
 

3-19 
 

 

1 2  

3-20 
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sin  

3-21 
 

4
 

3-22 
 

 

As previously stated, the bound vorticity of each horseshoe vortex only induces a tangential 

velocity.  Therefore, equations 3-17 and 3-18 can be applied as shown in Equations 3-23 and 

3-24 to calculate the axial and radial velocities induced from a horseshoe vortex that is used in 

representing a radial lifting line. 

 

, , , 1  
3-23 

  

, , , 1  
3-24 

 

 

For OpenProp, the above algorithms were implemented in the CMV.m function (Appendix A).  

This function was validated with Tables 1 and 2 in (7).  The test case used the representative 

blade circulation distribution shown in Figure 3-4 and assumed that the helical path of the 

trailing vortex system was determined solely by the incoming free stream and propeller rotation 

(i.e. the advance angle, β, was used instead of the hydrodynamic advance angle, βi).  
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Figure 3-4: CMV.m Validation Representative Circulation 

 

 

CMV.m required two Legendre functions and the Heuman Lambda function.  As these functions 

were not available as class functions in MATLAB®, they were written and validated for this 

thesis.  They are described below. 

 

Q2half.m (Appendix B) computes the Legendre function of the second kind and positive half 

order of the argument q in accordance with (8) as shown in Equation 3-25.     

 

Q q q
2

q 1  K
2

q 1 2 q 1  E
2

q 1  

3-25 
  

K(k) denotes the complete elliptic integral of the first kind, and E(k) denotes the complete elliptic 

integral of the second kind with the modulus, k, as the argument.  This was implemented in 
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MATLAB® using ELLIPKE with the parameter, m, as the argument which is shown in Equation 

3-26.   

 
2

1 

3-26 
 

This function was validated with Table XIII in (9).  For example: 

 

1.5 2 1.5 0.39175

   2.7 2 2.7 0.134035

     8.4 2 8.4 0.0229646
 

 

 

Q2Mhalf.m (Appendix B) computes the Legendre function of the second kind and minus half 

order of the argument q in accordance with (8) as shown in Equation 3-27.     

 

2
1  

2
1  

3-27 
 

As before, K(k) denotes the complete elliptic integral of the first kind with the modulus, k, as the 

argument.  This was implemented in MATLAB® using ELLIPKE with the parameter, m, as the 

argument as described above for Q2half.m. 

 

This function was validated with Table XIII in (9).  For example: 

 

1.5 2 1.5 2.01891

 2.7 2 2.7 1.38958

    8.4 2 8.4 0.768523
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Heuman.m (Appendix B) computes Heuman’s Lambda function of the arguments φ (amplitude) 

and α (modular angle) in accordance with (8) as shown in Equation 3-28.     

 

\
2

\ \  

3-28 
 

 

α sin k  
3-29 

 

 

K(α) denotes the complete elliptic integral of the first kind with the modular angle, α, as the 

argument.  F φ\ α  denotes the incomplete elliptic integral of the first kind with the 

amplitude, φ, and complementary modular angle, α, as the arguments.  E φ\ α  denotes 

the incomplete elliptic integral of the second kind. with the amplitude, φ, and complementary 

modular angle, α, as the arguments.   

 

K(α) was implemented in MATLAB® using ELLIPKE with the parameter, m, as the argument  

as shown in Equation 3-30. 

 

sin  
3-30 

 

F φ\ α  was implemented in MATLAB® using the imbedded Maple function EllipticF with 

the sine of the amplitude, sin(φ), and the parameter, k, as the arguments.  Since the 

complementary modular angle is used for the incomplete elliptic integral in this case, the 

parameter is defined as shown in Equation 3-31. 

 

 

3-31 
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E φ\ α  was implemented similarly in MATLAB® using the imbedded Maple function 

EllipticE. 

 

Heuman.m was validated with (8).   

Figure 3-5 was generated using Heuman.m and agrees with Figure 17.10 in (8).    

 

 
 

Figure 3-5: Heuman’s Lambda Function 
 

The sample calculations4 given below agree with Table 17.8 in (8). 

 

5 \10  5 \10 0.086495
    45 \60 45 \60 0.569122
    75 \40 75 \40 0.906056

 

 
                                                 
4 When executing Heuman.m in MATLAB, φ and α are entered in radians vice degrees. 
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3.4 Circulation Optimization 

The goal of OpenProp’s optimization routine is to calculate the radial distribution of circulation 

on the lifting line that minimizes torque for a given thrust.  Also specified are the propeller 

diameter, number of blades, advance coefficient (JS), and inflow velocity profile.  OpenProp v1.0 

uses the Lerbs criterion where tan  is obtained from tan  in terms of an unknown 

multiplicative factor (10).  The optimization routine initially estimates the hydrodynamic pitch 

angle (βi) based on the undisturbed flow angle (β) and the efficiency of the actuator disk.  The 

system of equations represented by Equation 3-32 is then solved to obtain the optimum 

circulation: 

 

, , tan β n Γ V n
tan β n
tan β n

1            n 1, … M 

3-32 
 

Using the circulation distribution, the vortex induced velocities on each panel of the lifting line 

are then solved.  This allows the forces to be calculated, and the resulting thrust is compared with 

the desired thrust.  The hydrodynamic pitch angle is then iteratively adjusted, and the process is 

repeated until the desired thrust is achieved (2).   

 

This thesis integrated the duct model into the Lerbs-based optimization routine as follows: 

- The influence functions included the effects of the duct image horseshoes. 

- The inflow velocities were modified to include the effect of the duct vortex rings. 

- The duct circulation was an entered value.  The circumferential mean velocity 

induced by the propeller on the duct was added to the inflow, and the thrust produced 

by the duct was calculated using the Kutta-Joukowski law.   

- The duct thrust was subtracted from the desired thrust. 

 

Using PLL, several test cases were run for validation.  In each case, the results indicated that the 

existing Lerbs-based optimization routine in OpenProp did not converge to the same result as 

PLL which uses a calculus of variations optimization routine.  The results for the 0.8 case 
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for a 5-bladed, 10 foot diameter propeller with CT=1.2 and JS=0.60 is presented below.  Viscous 

forces were ignored.      

 
 

Figure 3-6: OpenProp τ=0.80 test case using the Lerbs-based optimization routine 
 

The results showed that the Lerbs-based optimization routine in its current form was not 

extendable to a ducted propeller.  Upon further consideration, this was logical given that the 

routine relied on the initial undisturbed flow angle, β, at the propeller plane but did include the 

effect of the duct in this initial determination of β.  It may be possible to integrate a β iteration 

loop into the Lerbs-based routine, but that option was not pursued for this thesis. 

 

Following the unsuccessful attempt with the Lerbs-based optimization routine, the variational 

optimization routine presented in (1) was integrated into OpenProp.  This option was chosen for 

two reasons: 1) it is the proven routine used in PLL and 2) it is a more general optimizer that can 

be used for many different propulsor configurations.  In this routine the wake geometry is frozen 

while the optimum circulation distribution is calculated such that torque, 
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Γ ∆ , 

3-33 
 

is minimized, subject to the constraint that the thrust, 

 

Γ ∆ , 

3-34 
has a prescribed value, . 

 

The auxiliary function   is formed, and its partial derivatives with respect to 

the unknown variables ( Γ   and λ ) are set to zero as shown in equations 3-35 and 3-36 

below.  The Lagrange multiplier, , is an additional unknown variable and must be solved for 

along with the discrete circulation strengths, the Γ . 

 

Γ 0                    1. .     

 
3-35 

0 

3-36 
 

Equations 3-35 and 3-36 form a nonlinear system of 1 equations with  unknown values of 

circulation and an unknown Lagrange multiplier.  By assuming that the Lagrange multiplier is 

known where it forms quadratic terms with the circulation and that the tangential induced 

velocity, , is known, the solution to the nonlinear system of equations can be found by 

iteratively solving the following linear system of equations: 
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Γ 0 ∆  

Γ m u i, m r m Δr Γ m u m, i r i Δr  

Δ  

Γ m u i, m Δr Γ m u m, i Δr  

     1 …  
3-37 

 

Γ ∆ ,           

3-38 
 

For each iteration, the frozen Lagrange multiplier, , in equation 3-37 and the tangential induced 

velocity in equation 3-38 take on values from the previous values.  Furthermore, Coney 

determined that initially setting the induced velocities equal to zero and the Lagrange multiplier 

equal to -1 are suitable initial estimates of these quantities. 

 

After the optimum circulation distribution is found, the wake is aligned with the velocities 

induced by that circulation distribution.  The aligned wake is now frozen and the above process 

is repeated in order to determine a new optimum circulation distribution.  By using this double 

iterative approach, velocities and forces consistent with moderately loaded lifting line theory can 

be obtained. 

 

The above procedure was adapted to handle a ducted propeller.  Additionally, an estimate of the 

effects of viscous drag was added.  The following modifications were made: 

- The effects of the duct image horseshoes were added to the influence functions in 

equation 3-37 as shown in equations 3-6 and 3-7.       

- The effects of the duct ring vortices were included in calculating the induced 

velocities on the lifting line. 
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- The NACA a=0.8 meanline circulation distribution for the duct ring vortex system 

was scaled so that the duct produces the thrust specified by the thrust ratio. 

- The duct thrust, , calculated as shown in equation 3-9, was subtracted from the 

required thrust in equation 3-38.  Additionally, an estimate of the propeller’s viscous 

drag,   , was added to the required thrust.  The modified required thrust is 

given in Equation 3-39.     

 

Γ ∆  

3-39 
 

The propeller’s viscous drag was estimated using the two-dimensional airfoil sectional drag 

coefficients, , and the section chord lengths,  as shown in Equation 3-40. 

 

1
2 ∆  

3-40 
 

 

In OpenProp v2, the variational optimization routine described above was integrated as a 

MATLAB® function named Coney.m5 (Appendix C).  Within Coney.m, the ductVort.m and 

ductThrust.m functions discussed above were used to perform specific duct-related calculations.    

  

                                                 
5 Brenden Epps wrote the initial version of Coney.m.  The version of Coney.m implemented in OpenProp v2 was a 
modified and expanded version of his code.   
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4. Implementation and Validation 

In order to enable OpenProp to design a ducted propeller, the variational optimization routine 

(Coney.m) and associated MATLAB® functions (ductVort.m, ductThrust.m, vRing.m, CMV.m, 

Q2half.m, Q2Mhalf.m, and Heuman.m) discussed above were integrated into the OpenProp code.  

The graphical user interfaces (GUIs) were updated to include the required parameters for a 

ducted propeller as shown in Figure 4-1.   

 

 
Figure 4-1: OpenProp v2 single propeller design GUI with duct parameters 

 

The required duct parameters are located in the upper-right corner and are shown enlarged in 

Figure 4-2. 

 

 
Figure 4-2: OpenProp v2 required duct parameters 

 

If the user desires to design a propeller operating within a duct, the Ducted Propeller check box 

is selected and three parameters are required: 
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- Thrust Ratio: as given in equation 3-2, the thrust ratio specifies the portion of the 

desired thrust that the propeller will produce.  Typical values of thrust ratio are 0.7 to 

1.3.  Values less than one result in an accelerating duct that produces a positive thrust 

while values greater than one result in a decelerating duct that produces a negative 

thrust which must be overcome by the propeller.   

- Duct Diameter/Prop Diameter: determines the size of the duct in terms of the 

propeller diameter.  This value must be equal to or greater than one as a duct must at 

least be as large as the propeller which it surrounds.  This parameter determines the 

gap between the duct and the propeller tip which has a major influence on the 

optimum circulation distribution.  For this thesis, the Duct Diameter/Prop Diameter 

parameter was set to one and disabled since only the zero gap case was considered. 

- Duct Section Drag Coefficient: specifies the two-dimensional airfoil sectional drag 

coefficient which is used to estimate the duct’s viscous drag.  This parameter must be 

equal to or greater than zero.  A value of zero implies the inviscid case where viscous 

effects are neglected.  A typical value for the viscous case is 0.008. 

 

OpenProp v2 assumes the following: 

- The duct surrounds a radial lifting line. 

- The duct chord length, , is equal to the propeller radius, . 

- The duct is positioned such that the mid-chord is located at the lifting line. 

- The circulation distribution of the duct vortex ring system represents a NACA a=0.8 

meanline.  

 

In order to demonstrate the capability of OpenProp v2 and provide validation via a PLL 

comparison, several test cases were completed using a 5-bladed ducted propeller with optimum 

circulation distribution operating at 0.60 and 1.20.  The duct had zero thickness, and 

there was zero gap between the duct and the propeller.  For viscid runs, a sectional drag 

coefficient of 0.008 was used for both the duct and the propeller.  Appendix D contains all of the 
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run settings for both OpenProp v2 and PLL6.  Figure 4-3 shows a sample rendering of the ducted 

propellers designed in the test cases.   

 

 
Figure 4-3: Sample rendering of ducted propeller produced in the test cases 

 

First, to ensure the various functions and routines in the optimization routine were working 

correctly, the circulation from a 0.8 PLL run was fed into OpenProp v2.  Figure 4-4 and 

Figure 4-5 show given the same circulation distribution, OpenProp v2 calculated the same 

induced velocities as PLL.  This included the total induced velocities on the propeller control 

points (      ⁄⁄ ), the axial velocities induced by the duct rings on the propeller 

control points, and the velocities on the duct rings by the propeller lifting line. 

 

                                                 
6 All runs for both PLL and OpenProp v2 used 10 vortex panels.  Neither PLL or OpenProp v2 would run 
successfully with greater than 20 vortex panels.  PLL would crash for an unknown reason, and OpenProp v2 
experienced an error in the Heuman.m function.     
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Figure 4-4: OpenProp v2 algorithm propeller results using PLL circulation 
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Figure 4-5: OpenProp v2 algorithm duct results using PLL circulation 

 

 

Figure 4-6 gives an efficiency versus thrust ratio comparison for PLL and OpenProp v2.  The 

ideal efficiency as calculated by equation 3-1 using actuator disk theory is also shown.  For this 

figure, PLL and OpenProp v2 each ran independently (i.e. OpenProp v2 calculated its own 

optimum circulation distribution instead of using PLL’s as was the case in Figure 4-4 and Figure 

4-5).  

 



42 
 

 
Figure 4-6: Efficiency versus thrust ratio (τ) comparison between OpenProp v2 and PLL 

 

The OpenProp v2 results did not match PLL exactly, but they are close (within 1% for 1.0) 

and follow the same trend as PLL.  As with PLL, the maximum efficiency for the ducted 

propeller occurred at a thrust ratio of approximately 0.9.  The difference between OpenProp 

v2 and PLL increased above 1.0 and was approximately 2% at 1.2.7  The reason for the 

difference is explained by the optimum circulation distribution calculated by OpenProp v2. 

 

The following group of figures show comparisons between OpenProp v2 and PLL for thrust 

ratios of 0.8, 1.0, and 1.2.  Viscosity is neglected.  For 0.8, three figures are shown: Figure 

4-7 gives the standard OpenProp graphical output and Figure 4-8 and Figure 4-9 show the 

comparison between OpenProp v2 and PLL.  For  1.0 and 1.2, only the quad-chart with 

the circulation comparison is shown.  

                                                 
7 OpenProp v2 did not converge for thrust ratios greater than 1.2.   



43 
 

 
Figure 4-7: OpenProp v2 graphical output for test case with .  

 

 
Figure 4-8: OpenProp v2 comparison with PLL for .  
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Figure 4-9: OpenProp v2 comparison with PLL for .  (duct ring velocities) 

 

Figure 4-8 shows that the optimum circulation distribution obtained from OpenProp v2 is 

slightly different than PLL’s solution for the accelerating duct case.  The main difference was 

that with OpenProp v2 the circulation reached a maximum value at approximately r/R = 0.7 and 

decreased slightly at the tip.  

 

Figure 4-10 shows the comparison between OpenProp v2 and PLL for 1.0 (neutral duct).  

The results match very well. 
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Figure 4-10: OpenProp v2 comparison with PLL for .  

 

 

Figure 4-11 shows the comparison between OpenProp v2 and PLL for the decelerating duct case 

of  1.2.  As with the accelerating duct case, the optimum circulation distribution obtained 

from OpenProp v2 is slightly different than PLL’s solution.  For the decelerating duct, OpenProp 

v2’s optimum circulation distribution has an inflection point at approximately r/R = 0.7 and the 

tip circulation is slightly higher than the PLL solution.   
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Figure 4-11: OpenProp v2 comparison with PLL for .  
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5. Conclusions and Recommendations 

5.1 Conclusions 

This thesis successfully extended OpenProp’s capability such that it can now design a propeller 

operating inside a duct with no gap for thrust ratios between 0.7 and 1.2.  The results confirmed 

that maximum efficiency is obtained with a thrust ratio of approximately 0.9. 

 

The variational optimization routine used in OpenProp v2 was validated with output from PLL.  

All induced velocity calculations matched PLL, and the optimum circulation distribution 

matched PLL for the neutral duct case.  However, the optimum circulation distribution obtained 

from OpenProp v2 for both the accelerating and decelerating duct cases varied slightly but 

distinctively from PLL.  With PLL, the circulation distribution always reached a maximum at the 

tip.  This was not the case with OpenProp v2.  Only for the neutral duct case was this true for 

OpenProp v2.  For the accelerating duct, the circulation peaked at approximately r/R = 0.7 and 

the tip circulation was lower than PLL’s tip circulation.  For the decelerating duct, the circulation 

had an inflection point at approximately r/R = 0.7 and the tip circulation was higher than PLL’s.   

 

The specific reason for the differing optimum circulation distributions was not discovered.  

However, the author did verify that the variational optimization routine implemented in 

OpenProp v2 was a faithful representation of the routine presented by Coney in (1).  It was 

assumed that PLL used this variational optimization routine as well, but it is possible that PLL 

added additional constraints that were not discussed in (1).              
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5.2 Recommendations for further work 

 

This thesis only examined a duct with no thickness.  Source rings could be integrated into the 

algorithm to model duct thickness. 

 

A tip gap model could be added to represent the flow between the propeller and duct when a gap 

exists.  This would allow the design of ducted propellers with gaps greater than zero. 

  

This thesis did not analyze the flow around the duct nor did it attempt to define the true duct 

orientation.  By analyzing the flow around the duct three important objectives could be obtained.  

First, the designer could ensure that flow separation does not occur on the duct.  This is critical 

because if separation occurs, drag will increase dramatically.  Second, understanding the flow 

characteristics in the gap is essential to analyzing the performance of the entire system under 

various loading conditions.  Third, the flow streamlines would outline the shape of the duct and 

reveal the duct angle of attack (i.e. orientation).   Coupling OpenProp with a computational fluid 

dynamics code would be the ultimate goal to properly analyze the flow.  
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Appendix A.   Duct Theory MATLAB® Code 

A.1 ductVort.m    
%Discrete representation of vorticity (circulation) on vortex rings  
%that represent duct as a NACA a=0.8 meanline. 
  
%Calculates duct vortex ring influence (UADUCT)  
%on prop lifting line ctrl pts  
  
%Variables: 
% %   R [m]:            propeller radius 
% %   rDuct [m]:        duct radius (formerly vrRad), vortex ring radius at 
% %                     xDuct 
% %   Mp:               # of control points (N=M, M: # of vortex rings) 
% %   RC:               radius of ctrl pts on lifting line 
  
%Note: duct chord = R 
  
%Returns:  
%         vRingLoc [m]:     location of each vortex ring (x,y,z vector), 
%                           (formerly (vortex) 
%         dVort [m^2/s]:    circulation distribution of each vortex ring  
%         UADUCT [m/s]:     duct vortex ring axial influence on prop  
%                           lifting line control pts 
  
%close all;clear all;clc; 
  
function [vRingLoc,dVort,UADUCT] = ductVort(R,rDuct,Mp,RC) 
  
%setup vRing spacing 
M=Mp+2; 
if rem(M,2)~=0      %ensures Mp is even 
    M=M+1; 
end 
dS=1/M;             %spacing between vRings (non-dim with R) 
hdS=0.5*dS;         %half of dS 
  
%computes the circulation on vortex rings which each represent the  
%vorticity on a piece of NACA a=0.8 mean line located at position XvRing  
%(L.E.=0.0, T.E.=1.0) and is of length dS. 
  
XvRing=zeros(1,M);dVort=XvRing; 
  
for n=1:M 
    XvRing(n)=(n-1)*dS+hdS; 
  
    X2 = XvRing(n) + hdS; 
    X1 = XvRing(n) - hdS; 
    if X2 <= 0.8 
        dVort(n) = dS/0.9; 
    elseif X1 >= 0.8 
        Y1 = 1.0 - (X1 - 0.8)/0.2; 
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        Y2 = 1.0 - (X2 - 0.8)/0.2; 
        dVort(n) = dS*0.5*(Y1 + Y2)/0.9; 
    else 
        Y2 = 1.0 - (X2 - 0.8)/0.2; 
        FRONT = 0.8 - X1; 
        BACK = 0.5*(1.0 + Y2)*(X2 - 0.8); 
        dVort(n) = (FRONT + BACK)/0.9; 
    end 
end 
  
LED=-(M/2)*dS;          %location of leading vRing on duct 
XvRing=XvRing+LED; 
vRingLoc=zeros(3,M); 
vRingLoc(1,:)=XvRing; 
vRingLoc(2,:)=rDuct/R; 
  
% % plot(XvRing,dVort,'*',XvRing,dVort1,'+') 
  
%Calc duct vortex ring influence (UADUCT) on prop lifting line ctrl pts     
    %Note: No tangential influence 
    %Note: Radial influence does not create a force on radial lifting line 
  
UADUCT=zeros(Mp,1);             %axial influence 
URDUCT=UADUCT;UTDUCT=UADUCT;    %radial and tantential influence 
for n=1:Mp                      %cycle thru all ctrl pts on lifting line 
    P=[0;RC(n);0];              %3D coord for ctrl pt 
    for m=1:M                   %cycle thru all vortex rings on duct 
        UD = vRing(vRingLoc(1,m),vRingLoc(2,m),P,dVort(m)); 
        UADUCT(n)=UADUCT(n)+UD(1);  
        URDUCT(n)=URDUCT(n)+UD(2);  
        UTDUCT(n)=UTDUCT(n)+UD(3); 
    end 
end 
  
UADUCT=UADUCT*2*pi;         %2*pi needed for non-dimensional circulation (G) 
URDUCT=URDUCT*2*pi;          
UTDUCT=URDUCT*2*pi;  
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A.2 ductThrust.m 
%Calculates total duct thrust coefficient and associated parameters   
  
%This version handles one propeller.  Modifications required if additional 
    %rotors or stators desired. 
  
%Variables: 
% %   vRingLoc:         location of duct vortex rings 
% %   dVort:            circulation distribution on duct rings 
% %   dCirc:            strength of duct vorticity 
% %   rDuct:            radius of duct 
% %   CDd:              coefficient of drag for the duct 
% %   U [m/s]:          x-dir inflow velocity magnitude  
% %   rho [kg/m3]:      density of fluid 
% %   RV:               radius of trailing helical vortices on lifting line 
% %   G:                non-dim circulation for panels on lifting line 
% %   TanBI:            tangent of betaI for RV points 
% %   Z:                # of blades 
% %   R:                radius of propeller 
  
%Returns: CTD:          total duct thrust coeff (viscous drag included) 
%         dCirc         new dCirc scaled to provide desired duct thrust 
%         UAdVS         induced axl velocity on duct ring from lifting line 
%         URdVS         induced rad velocity on duct ring from lifting line 
  
function [CTD,dCirc,UAdVS,URdVS] = ductThrust(vRingLoc,dVort,dCirc,... 
                                    rDuct,CDd,U,rho,RV,G,TanBI,Z,R,CTDDES) 
  
M=length(dVort);            %# of duct vortex rings  
k=[0 0 1];                  %unit vector in Z direction 
Uvec=[U;0;0];               %free stream velocity vector 
  
%Velocity vector at each vortex (Vvortex) 
Vvortex=zeros(3,M); 
VvortexInduced=Vvortex; 
Lvortex=Vvortex; 
  
for m=1:M                   %cycles thru all vortex rings 
    VvortexInduced(:,m)=VvortexInduced(:,m) + CMV1(vRingLoc(1,m),... 
                        vRingLoc(2,m),RV,G,TanBI,Z);   %radial lifting line 
    Vvortex(:,m)       =VvortexInduced(:,m) + Uvec; 
    Lvortex(:,m)       =rho*cross(Vvortex(:,m),k*dCirc*dVort(m)); 
                                    %lift on a vortex ring 
end 
  
URdVS=VvortexInduced(2,:);      %induced rad vel on duct ring from prop       
  
%Note: CMV1.m values for axial and tangential induced velocities on the duct 
%rings don't match PLL results. Tangential velocities are not needed, so that  
%discrepancy is not resolved.  Axial velocities only match for -x locations. 
%However, from PLL, +x are a negative mirror of -x values so I have adjusted 
%accordingly so that axial tangential velocities can be used to calculate the  
%duct viscous drag. 
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%Adjust axial CMV so that results matches PLL 
m1 = M/2;                   %last -x vortex  
for m=1:M/2 
    VvortexInduced(1,m1+m)=-VvortexInduced(1,m1-m+1); 
end 
  
Vvortex(1,:)=VvortexInduced(1,:) + Uvec(1); 
UAdVS=VvortexInduced(1,:);      %induced axl velocity on duct ring from prop          
  
  
%Duct thrust (CONEY P. 77, EQN 3.28.) 
Lift=sum(Lvortex,2); 
dThrust=-2*pi*rDuct*Lift(1);     %thrust (-x direction) for duct [N]:')  
                                 %positive implies thrust to the ship 
  
%Viscous drag for duct (Drag = 0.5*rho*V^2*Chord*CDd * 2*pi*rDuct) 
delS=abs(vRingLoc(1,1)-vRingLoc(1,2));          %vortex spacing  
                                                %linear spacing assumed 
dDrag = 0; 
for m=1:M 
    dDrag = dDrag + Vvortex(1,m)^2; 
end 
dDrag=0.5*rho*dDrag*delS*CDd*2*pi*rDuct;        %R = duct chord length 
CTDdrag   = 4*dDrag  /(R*2*pi)/(rho*R);         %normalized duct "drag" CT 
CTDthrust = 4*dThrust         /(rho*R);         %normalized duct "thrust" CT 
  
dThrustTot=dThrust-dDrag/(R*2*pi);              %total thrust for the duct 
                                                %(R*2*pi) required to make  
                                                %dDrag dimensions match  
                                                %dThrust 
  
CTD = 4*dThrustTot / (rho*R);                   %CT for duct   
  
%scale duct circulation so that duct provides required thrust 
if dCirc~=0 
    dCirc = dCirc/CTDthrust*(CTDDES+CTDdrag); 
end 
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A.3 vRing.m 
%Returns velocity vector induced by vortex ring of input strength 
%gamma at a point (p) in space given the x-axis location (vrX) and  
%radius (vrRad) of the vortex ring:  
  
%Axis of the vortex ring is in the direction of the x-axis. 
  
%Variables 
    %gamma:     vortex ring strength 
    %vrX:       x-axis location of vortex ring 
    %vrRad:     radius of vortex ring 
    %p          (Px,Py,Pz) point at which velocity is induced 
  
%Returns: Vp:   velocity at point P     
  
%Ref: Kuchemann and Weber, Aerodynamics of Propulsion p 305. 
  
function [Vp] = vRing(vrX,vrRad,p,gamma) 
  
if vrRad == 0               %stops function if vrRad = 0 
    Vp=[0; 0; 0];  
    return 
end 
  
if vrRad < 0                %stops function if vrRad < 0 
    Vp=[NaN; NaN; NaN];  
    return 
end 
  
Px=p(1);Py=p(2);Pz=p(3); 
     
if Pz==0 
    if Py<0 
        thetaP=-pi/2;               %cylindrical coord angle for P 
    else 
        thetaP=pi/2; 
    end 
else 
    if Pz>0                         %logic for atan ambiguity  
        thetaP=atan(Py/Pz); 
    else 
        thetaP=atan(Py/Pz)+pi; 
    end 
end 
Prad=sqrt(Pz^2 + Py^2);             %cylindrical coord radius for P 
  
if vrX==p(1) & vrRad==Prad          %stops function if P on vortex ring 
    Vp=[NaN; NaN; NaN]; 
    return 
end 
     
x=(Px-vrX)/vrRad;                   %x/r' from Kuchemann 
r=Prad/vrRad;                       %r/r' from Kuchemann 
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%Elliptic integral method (Kuchemann p. 305) 
%uses parameter k where k^2 = m for elliptic integrals 
  
k=sqrt(4*r/(x^2+(r+1)^2)); 
[K,E]=ellipke(k^2); 
  
Vx=gamma/(2*pi*vrRad)/sqrt(x^2+(r+1)^2)*(K-(1+2*(r-1)/(x^2+(r-1)^2))*E); 
  
if r==0 
    Vr=0; 
else 
    Vr=gamma/(2*pi*vrRad)*(-x)/r/sqrt(x^2+(r+1)^2)*(K-(1+2*r/... 
    (x^2+(r-1)^2))*E); 
end 
  
Vy=Vr*sin(thetaP); 
Vz=Vr*cos(thetaP); 
  
Vp=[Vx; Vy; Vz]; 
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A.4 vpfDuct.m 
%Velocity Prediction Function for a Duct 
%Returns velocity (Vp) at pt P due to a set of vortex rings, 
    %source rings (for thickness), and free stream 
     
%Variables: 
% %   P:                point at which velocity is desired (column vector) 
% %   vortex:           matrix of vortex and source locations 
% %   gamma:            matrix of vortex ring strengths 
% %   S:                matrix of source ring strengths 
% %   Uvec:             free stream velocity vector 
  
%Returns: Vp:           velocity at point P     
  
function [Vp] = vpfDuct(P,vortex,gamma,S,Uvec) 
  
Vp = [0; 0; 0]; 
for m=1:size(vortex,2)             %cycle thru all vorticies 
    Rvp=P-vortex(:,m);             %vector from vortex to P 
    if norm(Rvp)<10e-5             %skips vortex if P is on vortex  
    else 
        Jp=Rvp / (2*pi*norm(Rvp)^2); 
        Vp=Vp + vRing(vortex(1,m),vortex(2,m),P,gamma(m));  
        %future improvement: add source ring influence  
    end 
end 
Vp=Vp+Uvec; 
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A.5 CMV.m 
%Returns circumferential mean tangential,axial, and radial induced  
%velocities of a propeller at any desired axial location 
  
%Uses Coney's version of Hough and Ordway's Formulas 
     
%uHough and vHough are included as a validation case.  They are only 
    %valid for no hub and trailing vortex system whose path is determined 
    %soley by the incoming free stream with translation U and rotation 
    %(omega). (Hough p.319) 
  
%Variables 
    %xC:    axl dist btwn prop (i.e. vortex plane) and control point plane 
    %       positive if ctrl pt downstream of propeller 
    %rC:    radius to calculate CMV 
    %M:     # of panels on lifing line 
    %gamma: circulation for panels on lifting line 
    %rtv:   vector of radius of trailing vorticies on prop lifting line 
    %Z:     number of blades 
    %TanBI: vector of tangent of advance angles of trailing vortices 
  
%Returns: axlCMV: axial CMV at xC,rC 
     %    radCMV: radial CMV at xC, rC 
     %    tanCMV: tangential CMV at xC, rC 
  
function [Vp] = CMV(xC,rC,rtv,gamma,TanBI,Z) 
  
if abs(xC)<10e-10 & rC==rtv(end)     %logic to skip routine  
                                     %if ctrl pt on lifting line 
    Vp = [0; 0; 0] 
    return 
end 
  
M=length(gamma); 
  
%tangential velocity induced from a horseshoe vortex  
%(bound and trailing vorticity) 
tanCMV=0; 
  
% % %Coney's implementation.  tanCMV = 0 if rtv=rC or if xC=0 
% % for i=1:M 
% %     S=(rtv(i)-rC)*(rtv(i+1)-rC); 
% %     if S<0 & xC>0 
% %         tanCMV=tanCMV-Z*gamma(i)/(2*pi*rC); 
% %     end 
% % end 
  
%axial and radial velocity induced from trailing vorticies 
    %sum effect from every trailing vortex. except for ends, each rtv 
    %represents two trailing vortex with different circulation. 
    %for each horseshoe, lower trailer gamma is same sign as bound gamma 
    %and upper tailer is opposite sign. (coney p. 171).   
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axlCMV=0;radCMV=0; 
    
for i=1:M+1 
    q=1+(xC^2+(rC-rtv(i))^2)/(2*rC*rtv(i)); 
    s=asin(xC/sqrt(xC^2+(rC-rtv(i))^2));        
                                    %amplitude wrt elliptical integrals 
    t=sqrt(4*rC*rtv(i)/(xC^2+(rC+rtv(i))^2));   
                                    %t=k (modulus wrt elliptical integrals) 
             
    if rC>rtv(i)         %agrees with Coney 
                         %Hough has rc>=rtv(i)  
        c1=   xC/(2*sqrt(rC*rtv(i)))*Q2Mhalf(q)-pi/2*Heuman(s,asin(t)); 
    else 
        c1=pi+xC/(2*sqrt(rC*rtv(i)))*Q2Mhalf(q)+pi/2*Heuman(s,asin(t)); 
    end 
  
    % c2 is not needed if tanCMV calculated using Kelvin's theorem 
% %     if rC<rtv(i) 
% %         c2=   xC/(2*sqrt(rC*rtv(i)))*Q2Mhalf(q)-pi/2*Heuman(s,asin(t)); 
% %     else 
% %         c2=pi+xC/(2*sqrt(rC*rtv(i)))*Q2Mhalf(q)+pi/2*Heuman(s,asin(t)); 
% %     end 
  
    if i~=1 && i~=M+1            %logic for interior trailer vortices 
        axlCMV=axlCMV+Z*c1/(pi*rtv(i)                *TanBI(i))*... 
                    (gamma(i)-gamma(i-1)); 
        radCMV=radCMV+Z*Q2half(q)/(pi*sqrt(rC*rtv(i))*TanBI(i))*... 
                    (gamma(i)-gamma(i-1)); 
%         tanCMV=tanCMV+Z*c2/(pi*rtv(i)                *... 
                    %(gamma(i)-gamma(i-1)));    
  
    else if i==1                %logic for first and last trailer vortices 
             axlCMV=axlCMV+gamma(i)*Z*c1/(pi*rtv(i)*... 
                        TanBI(i)); 
             radCMV=radCMV+gamma(i)*Z*Q2half(q)/(pi*sqrt(rC*rtv(i))*... 
                        TanBI(i)); 
%              tanCMV=tanCMV+gamma(i)*Z*c2/(pi*rtv(i));  
              
        else axlCMV=axlCMV-gamma(i-1)*Z*c1/(pi*rtv(i)*... 
                        TanBI(i)); 
             radCMV=radCMV-gamma(i-1)*Z*Q2half(q)/(pi*sqrt(rC*rtv(i))*... 
                        TanBI(i)); 
%              tanCMV=tanCMV-gamma(i-1)*Z*c2/(pi*rtv(i));  
  
        end 
    end 
end 
  
axlCMV=-axlCMV/2;           %adjust to match PLL output for UA/VS  
                            %(only matches negative x values) 
radCMV=radCMV/2;            %adjust to match PLL output for UR/VS 
  
Vp = [axlCMV; radCMV; tanCMV]; 
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A.6 ductPlot.m 
%Plots duct 
  
%Variables: 
% %   c [m]:            chordlength 
% %   alpha [radians]:  angle of attack 
% %   vrRad [m]:        vortex ring radius (duct radius to meanline) 
% %   ductRef:          chordwise reference position on duct 
% %                     fixed at 0.5 but could be passed as a variable 
% %   xDuct [m]:        global propeller x-coord of ductRef  
% %   fo:               max camber (% of chordlength) 
% %   to:               max thickness (% of chordlength) 
                   
% % Notes: X-axis positive in streamwise direction (i.e. downstream). 
  
function[] = ductPlot(vrRad,c,fo,to,alpha,ductRef) 
     
%Read in meanline f(x) and thickness t(x) distribution data 
        %Read foil data (x, f/fo, t/to) from text file 
        %Foil_data.txt contains parabolic meanline (f/fo)  
        %and elliptical thickness(t/to) data 
  
[x_over_c,f_over_fo,t_over_to]=textread('foil_data.txt','%f%f%f',... 
                                        'headerlines',3); 
%x_over_c range is -c/2 to c/2 (this is converted to x=0 to x=c below) 
  
f=fo*c*f_over_fo;         %camber distribution 
t=to*c*t_over_to;         %thickness distribution 
  
x=x_over_c*c + c/2;     %dimensionalizes x with a range of 0 to c 
                        %range of 0 to c is needed for cosine spacing 
  
fpp=spline(x,f);        %spline camber data 
% % fPpp=fnder(fpp);    %splines slope of fpp 
tpp=spline(x,t);        %spline thickness data  
  
%alt method not using FNDER (Spline Toolbox) 
xl=length(x); 
theta=zeros(xl,1); 
for m=1:xl 
    if m==xl 
        theta(m)=theta(m-1); 
    else 
        theta(m)=atan((ppval(fpp,x(m+1))-ppval(fpp,x(m)))/(x(m+1)-x(m))); 
    end 
end 
  
%Generate 2-D flat cross-section 
% % theta   = atan(ppval(fPpp,x)); 
x_upper = x - t/2.*sin(theta); 
y_upper = f + t/2.*cos(theta); 
x_lower = x + t/2.*sin(theta); 
y_lower = f - t/2.*cos(theta); 
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% % % %Plot 2-D section with 0 degrees angle of attack 
% % % plot(x_lower,y_lower) 
% % % hold on 
% % % plot(x_upper,y_upper) 
% % % xlabel('X-axis');ylabel('Y-axis'); 
% % % title('Duct section with 0 degrees angle of attack'); 
% % % axis equal 
% % % figure 
  
%Reposition section 
var1=ductRef*c;                 %offset (x-dir), ductRef at x=0 
var2=ppval(fpp,ductRef*c);      %offset (y-dir) for camber, ductRef at y=0 
var3=0.5*ppval(tpp,ductRef*c);  %offset (y-dir) for thick, ductRef at y=0 
                                %ductRef is point where blade and duct meet               
x_upper = x_upper - var1; 
y_upper = y_upper - var2 + var3; 
x_lower = x_lower - var1; 
y_lower = y_lower - var2 + var3; 
  
%Rotate for angle of attack and place section at correct radius 
x_upper_rot = x_upper*cos(-alpha) - y_upper*sin(-alpha); 
y_upper_rot = x_upper*sin(-alpha) + y_upper*cos(-alpha) + vrRad; 
x_lower_rot = x_lower*cos(-alpha) - y_lower*sin(-alpha); 
y_lower_rot = x_lower*sin(-alpha) + y_lower*cos(-alpha) + vrRad; 
  
% % % %Plot duct section rotated 
% % % plot(x_lower_rot,y_lower_rot) 
% % % hold on 
% % % plot(x_upper_rot,y_upper_rot) 
% % % xlabel('X-axis');ylabel('Y-axis'); 
% % % title(['Duct section (repositioned) with ',num2str(alpha*180/pi),... 
% % %                                          ' degrees angle of attack']); 
% % % axis equal 
% % % figure 
  
%Build all sections (upper and lower surfaces) for complete 3-D duct   
z=zeros(length(x),1); 
[thetaU,phiU,RU]=cart2sph(y_upper_rot,x_upper_rot,z); 
[thetaL,phiL,RL]=cart2sph(y_lower_rot,x_lower_rot,z); 
    
nds=50;                         %# of duct sections for plotting 
for n=1:nds 
%     phi=0+pi:1.9*pi/(nds-1):2.1*pi+pi;    %360 deg coverage for duct 
    phi=0:2*pi/(nds-1):2.1*pi;    %360 deg coverage for duct 
    [x_u_3D(n,:),y_u_3D(n,:),z_u_3D(n,:)]=sph2cart(phi(n),thetaU,RU); 
    [x_l_3D(n,:),y_l_3D(n,:),z_l_3D(n,:)]=sph2cart(phi(n),thetaL,RL); 
  
% % %     %Plot duct sections individually 
% % %     plot3(z_u_3D(n,:),x_u_3D(n,:),y_u_3D(n,:)) 
% % %     hold on 
% % %     plot3(z_l_3D(n,:),x_l_3D(n,:),y_l_3D(n,:)) 
end 
% % % xlabel('X-axis');ylabel('Y-axis');zlabel('Z-axis') 
% % % title(['Duct with ',num2str(alpha*180/pi),' degrees angle of attack']) 



62 
 

% % % axis equal 
% % % figure 
     
%Plot duct as 3-D surface 
surfl(z_u_3D,x_u_3D,y_u_3D) 
hold on 
surfl(z_l_3D,x_l_3D,y_l_3D) 
% % % xlabel('X-axis');ylabel('Y-axis');zlabel('Z-axis') 
% % % title(['Duct with ',num2str(alpha*180/pi),' degrees angle of attack']) 
% % % axis equal 
  
%shading interp 
%colormap(copper) 
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Appendix B.  Mathematical Functions MATLAB® Code 

B.1 Q2half.m 
%Q2half: Legendre fuction of the second kind and positive half order 
        %Ref: Handbook of Math Functions, Abramowitz and Stegun, 1972 
        %section 8.13.7, p.337 
        %uses modulus k for elliptic integrals (m=k^2) 
        %ellipke uses parameter m.  
  
function [Q2] = Q2half(q)   
         
k=sqrt(2/(q+1)); 
[K,E]=ellipke(k^2); 
Q2=q*k*K-sqrt(2*(q+1))*E; 
  
%Validated with the National Bureau of Standards Tables of  
%Associated Legendre Functions  
%(Columbia University Press, New York, 1945), p.266. 
%From the tables: Q2half(1.5)=.393175, Q2half(2.7)=.134035, 
%Q2half(6)=.0382887, Q2half(8.4)=.0229646, Q2half(10)=.0176449 
 

B.2 Q2Mhalf.m 
%Q2Mhalf: Legendre fuction of the second kind and minus half order 
        %Ref: Handbook of Math Functions, Abramowitz and Stegun, 1972 
        %section 8.13.3, p.337 
        %uses modulus k for elliptic integrals (m=k^2) 
        %ellipke uses parameter m.  
         
function [Q2M] = Q2Mhalf(q)        
  
k=sqrt(2/(q+1)); 
[K,E]=ellipke(k^2); 
Q2M=k*K; 
  
%checked with ref p.340 example 
%Validated with the National Bureau of Standards Tables of  
%Associated Legendre Functions  
%(Columbia University Press, New York, 1945), p.264. 
%%From the tables: Q2Mhalf(1.5)=2.01891, Q2Mhalf(2.7)=1.38958, 
%Q2Mhalf(6)=0.911696, Q2Mhalf(8.4)=0.768523, Q2Mhalf(10)=0.703806 
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B.3 Heuman.m 
%Heuman: Heuman's Lambda fuction 
%Ref: Handbook of Math Functions, Abramowitz and Stegun, 1972 
        %section 17.4.39, p.595 
%Ref: Handbook of Elliptic Integrals for Engineers and Physicists, Byrd and 
        %Friedman, 1954, p37. 
  
%phi:       amplitude (radians),        (CMV sends 's' as phi) 
%alpha:     modular angle (radians),    (CMV sends 't' alpha) 
              
function [H] = Heuman(phi,alpha)   
  
[K,E]=ellipke(sin(alpha)^2); 
F=mfun('EllipticF',sin(phi),sin(pi/2-alpha));    
                                %Incomplete elliptic integral, 1st kind 
EE=mfun('EllipticE',sin(phi),sin(pi/2-alpha));   
                                %Incomplete elliptic Integral, 2nd kind 
  
H=2/pi*(K*EE-(K-E)*F); 
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Appendix C.  Variational Optimization Routine MATLAB® Code 

C.1 Coney.m 
% ========================================================================= 
% ========================================================== Coney Function 
% 
% The Coney function determines the  "optimum" circulation distribution  
% that satisfies the input operating conditions, using a variational  
% optimization algorithm, as described on Coney, page 25.  The Coney 
% function returns performance specs, such as thrust coefficient and  
% efficiency, as well as the circulation distribution, ect.  
% 
% Reference: Coney, William, "A Method for the Design of a Class of Optimum 
%            Marine Propulsors", Ph.D. thesis, MIT, 1989. 
% 
% Includes Coney and Align_wak functions 
% Authors: Brenden Epps (variational optimization and wake alignment) 
%          Mitch Stubblefield (duct integration) 
% ------------------------------------------------------------------------- 
  
function [CT,CQ,CP,KT,KQ,VMIV,EFFY,RC,G,VAC,VTC,UASTAR,UTSTAR,TANBC,... 
            TANBIC,CoD,CD,TAU,Xring,dVort,UADUCT,dCirc,UAdVS,URdVS]... 
         = Coney(Rhub,R,Z,Mp,ITER,Rhv,HUF,TUF,SCF,Js,CTDES,Hub_Flag,... 
            Duct_Flag,TAU,rDuct_oR,CDd,XR,XCoD,XCD,XVA,XVT,rho,Vs); 
clc 
  
%------------------- Initialize variables needed in functions 
rDuct=rDuct_oR*R;       %duct radius 
UADUCT=zeros(1,Mp);     %Induction of duct on lifting line ctrl pts 
CTD=0;                  %CT for duct 
dVort=zeros(1,Mp+2);    %circulation distribution of each vortex ring  
Xring=zeros(1,Mp+2);UAdVS=Xring;URdVS=Xring; 
      
%------------- Compute the Volumetric Mean Inflow Velocity, eqn 163, p.138 
Rhub_oR = Rhub/R;                % [ ], hub radius       / propeller radius 
RoR     = 1;                     % [ ], propeller radius / propeller radius 
  
VMIV = 2*trapz(XR,XR.*XVA)/(RoR^2-Rhub_oR^2);     % [ ], VMIV/ship velocity 
  
% ------------------------ Compute evenly-spaced vortex & control pt. radii 
RV=zeros(1,Mp+1);RC=zeros(1,Mp);                     % initialize RC and RV 
if Duct_Flag==0 & Hub_Flag==0               % no duct image or hub image 
    DRR = (RoR-Rhub_oR)/(Mp+.5);            % panel size 
    RV(Mp+1)=RoR-.25*DRR;                   % 25% tip inset 
    RV(1)=Rhub_oR+.25*DRR;                  % 25% hub inset 
elseif Duct_Flag==1 & Hub_Flag==0           % duct image but no hub image 
    DRR = (RoR-Rhub_oR)/(Mp+.25);           % panel size 
    RV(Mp+1)=RoR;                           % no tip inset 
    RV(1)=Rhub_oR+.25*DRR;                  % 25% hub inset 
elseif Duct_Flag==1 & Hub_Flag==1           % duct image and hub image 
    DRR = (RoR-Rhub_oR)/(Mp);               % panel size  
    RV(Mp+1)=RoR;                           % no tip inset 
    RV(1)=Rhub_oR;                          % no hub inset 
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elseif Duct_Flag==0 & Hub_Flag==1           % no duct image but hub image 
    DRR = (RoR-Rhub_oR)/(Mp+.25);           % panel size 
    RV(Mp+1)=RoR-.25*DRR;                   % 25% inset for tip 
    RV(1)=Rhub_oR;                          % no hub inset 
end 
  
RC(1)=RV(1)+.5*DRR;                         % ctrl pt at mid-panel 
for m=2:Mp 
    RV(m)=RV(m-1)+DRR; 
    RC(m)=RC(m-1)+DRR; 
end 
     
DR = diff(RV);              % difference in vortex radii / propeller radius 
  
% ------------ Interpolate Va, Vt, Cd, and c/D at vortices & control points   
VAV = pchip(XR,XVA,RV);     % axial      inflow vel. / ship vel. at vort pts 
VTV = pchip(XR,XVT,RV);     % tangential inflow vel. / ship vel. at vort pts 
VAC = pchip(XR,XVA,RC);     % axial      inflow vel. / ship vel. at ctrl pts 
VTC = pchip(XR,XVT,RC);     % tangential inflow vel. / ship vel. at ctrl pts 
CD  = pchip(XR,XCD,RC);     % section drag coefficient           at ctrl pts 
CoD = pchip(XR,XCoD,RC);    % section chord / propeller diameter at ctrl pts 
  
TANBC  = VAC./(pi.*RC./Js + VTC);               % tan(Beta) at control pts. 
  
%Allocate CTDES between propeller and duct 
CTPDES     = CTDES*TAU;               %CT desired for the propeller 
CTDDES     = CTPDES/TAU-CTPDES;       %CT desired for the duct 
VD         = 0;                       %viscous drag 
  
%Initial guess for dCirc (circulation on duct) 
dCirc = 0.5*(1-TAU); 
if TAU==1 & CDd~=0      %provides a small duct circulation to offset drag 
    dCirc = .001; 
end 
  
% ------ Compute vortex ring influence functions from duct 
if Duct_Flag == 1  
    [vRingLoc,dVort,UADUCT] = ductVort(R,rDuct,Mp,RC); 
    Xring=vRingLoc(1,:); 
end 
  
% ===================== Determine optimum circulation distribution function 
% 
% See William Coney Ph.D. thesis "A Method For the Design of a Class of 
% Optimum Marine Propulsors", MIT, 1989, page 25 for a discussion of 
% this variational optimization algorithm. 
  
% ---- Initialize induced velocities & Lagrange multiplier (Coney p.27) 
UASTAR(1:Mp) =  0;              % UASTAR / ship speed 
UTSTAR(1:Mp) =  0;              % UTSTAR / ship speed 
LM_last      = -1;              % last value of the Lagrange Multiplier, LM 
 G_last      =  0;              % last value of the circulations, G 
  
A = zeros(Mp+1);                % A matrix for linear system of equations 
B = zeros(Mp+1,1);              % B matrix for linear system of equations 
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%Estimate the axial induced velocity with actuator disc approx 
for m=1:Mp 
    UASTAR(m)=0.5*(sqrt(1+CTPDES)-1) + dCirc*UADUCT(m); 
end 
  
%Initial TANBIC and TANBIV estimates 
[TANBIC,TANBIV] = find_tan_BetaI(VAC,VTC,UASTAR,UTSTAR,RC,RV,Js); 
  
% --------- Iterate to solve simultaneous equations for G, LM, & BetaI. Fix 
%           BetaI, and solve simultaneous equations for G and LM. 
B_iter = 1;                     % iteration in the BetaI loop 
B_res  = 1;                     % residual BetaI between interations 
TANBIC_last  = TANBIC;          % the last value of TANBIC 
  
  
while B_iter < ITER & B_res > 1e-5                        % (WHILE LOOP B1) 
  
    % ------------- Compute the vortex Horseshoe Influence Functions, p.179 
    [UAHIF,UTHIF] = Horseshoe(Mp,Z,TANBIV,RC,RV,SCF,Hub_Flag,Rhub_oR,... 
                                Duct_Flag,rDuct_oR); 
     
    % -------- Iterate to solve simultaneous equations for G and LM for the 
    %          current values of BetaI. (Coney eqns. 2.32 & 2.33, p.27) 
     G_iter = 1;                % iteration in the G loop 
     G_res  = 1;                % residual G  between interations 
    LM_res  = 1;                % residual LM between interations 
     
    while G_iter < ITER & (G_res > 1e-5 | LM_res > 1e-5)  % (WHILE LOOP G1) 
  
        % ----------------------- Solve simultaneous equations for G and LM     
        for i = 1:Mp                            % for each vortex  panel, i  
            for m = 1:Mp                        % for each vortex  panel, m 
                A(i,m) = UAHIF(i,m)*RC(m)*DR(m)   + ...                 % A  
                         UAHIF(m,i)*RC(i)*DR(i)   + ... 
                         LM_last*UTHIF(i,m)*DR(m) + ... 
                         LM_last*UTHIF(m,i)*DR(i); 
            end 
  
            A(i,Mp+1) = (VTC(i) + pi*RC(i)/Js)            *DR(i);       % C 
            A(Mp+1,i) = (VTC(i) + pi*RC(i)/Js + UTSTAR(i))*DR(i);       % D 
  
            B(i)  = -(VAC(i)+dCirc*UADUCT(i))*RC(i)*DR(i);              % B 
        end 
  
        B(Mp+1) = (CTPDES+VD)/(4*Z);                                    % D 
  
        GLM = linsolve(A,B);       % Solve Mp+1 by Mp+1 system of equations 
  
        G   = GLM(1:Mp);           % G is the first Mp entries 
        LM  = GLM(Mp+1);           % LM is the last entry 
         
        % ----- Compute induced velocities at control points eqn 254, p.179 
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        [UASTAR,UTSTAR] = Induced_Velocity(Mp,G,UAHIF,UTHIF,UADUCT,dCirc);  
        
        % ------ Calculate duct thrust (including propeller influence) 
        %        and scale duct circulation (dCirc)          
        if Duct_Flag == 1  
            [CTD,dCirc,UAdVS,URdVS] = ductThrust(vRingLoc,dVort,dCirc,... 
                        rDuct,CDd,XVA(end),rho,RV,G',TANBIV,Z,R,CTDDES);  
        end 
        
        % ---------------------------------- Prepare for the next iteration 
        G_iter = G_iter + 1            % iteration in the G loop  
        G_res  = abs(G  -  G_last);    % residual G  between interations 
        LM_res  = abs(LM - LM_last);   % residual LM between interations         
        G_last = G;                    % the last value of G 
        LM_last = LM;                  % the last value of LM 
         
        if G_iter > ITER 
            warning('on'), 
            warning('WARNING: While loop G1 did NOT converge.'), 
            warning('off'), 
        end 
    end                                               % (END WHILE LOOP G1) 
     
    % ------------------ Align the wake to the new circulation distribution 
    [UAHIF,UTHIF,UASTAR,UTSTAR,TANBIC,TANBIV] = ... 
         Align_wake(TANBIC,TANBIV,ITER,Mp,Z,RC,RV,SCF,Hub_Flag,Rhub_oR,... 
                    G,VAC,VTC,Js,Duct_Flag,rDuct_oR,UADUCT,dCirc); 
      
    % -------------------------------------- Prepare for the next iteration 
    B_iter = B_iter + 1                % iteration in the BetaI loop 
    B_res  = abs(TANBIC - TANBIC_last); % residual BetaI between interations 
    TANBIC_last = TANBIC;               % the last value of TANBIC 
     
    if B_iter > ITER 
        warning('on'), 
        warning('WARNING: While loop B1 did NOT converge.'), 
        warning('off'), 
    end 
  
    [CT,CQ,CP,KT,KQ,EFFY,TAU,VD] = Forces(CD,RV,VAC,TANBC,UASTAR,UTSTAR,... 
                                CoD,G,Mp,RC,Hub_Flag,Rhv,Z,Js,VMIV,CTDDES); 
     
end                                                   % (END WHILE LOOP B1) 
  
% --------------------- Compute thrust & torque coefficients and efficiency 
[CT,CQ,CP,KT,KQ,EFFY,TAU,VD] = Forces(CD,RV,VAC,TANBC,UASTAR,UTSTAR,... 
                                CoD,G,Mp,RC,Hub_Flag,Rhv,Z,Js,VMIV,CTDDES); 
  
% % ------- If required, unload the hub and tip, then rescale the circulation 
% %         distribution to get the desired value of the thrust coefficient. 
% if Hub_Flag & (HUF > 0 | TUF > 0)                       % (IF STATEMENT U1) 
%      
%     % ---------------------- Unload hub and tip as specified by HUF and TUF 
%     RU = (RC - Rhub_oR)./(RoR - Rhub_oR); 
%  
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%     nH = 4; 
%     nT = 3; 
%  
%     GH = HUF*G(1) *sqrt(1-RU.^2).*(1-RU.^2).^(2*nH-2); 
%     GT = TUF*G(Mp)*sqrt(1-RU.^2).*(  RU.^2).^(2*nT-2); 
%      
%     G  = G - GH' - GT'; 
%  
%     % ============= END determine optimum circulation distribution function 
%    
%     % ------------------ Align the wake to the new circulation distribution 
%     [UAHIF,UTHIF,UASTAR,UTSTAR,TANBIC,TANBIV] = ... 
%          
Align_wake(TANBIC,TANBIV,ITER,Mp,Z,RC,RV,SCF,Hub_Flag,Rhub_oR,G,VAC,VTC,Js,..
. 
%                     Duct_Flag,rDuct_oR,UADUCT,dCirc) 
%     
%     % ------- Iterate to scale G to get desired value of thrust coefficient 
%     CT_iter   = 1;                          % iteration in the CT loop 
%     CT_res    = 1;                          % residual CT    
%     CT_last2  = 0;                          % the CT prior to the last CT 
%     CT_last1  = 0;                          % the last value of CT 
%     GMF_last2 = 0;                          % the GMF prior to the last GMF 
%     GMF_last1 = 0;                          % the last value of GMF 
%      
%     while CT_iter < ITER & CT_res > 1e-5                 % (WHILE LOOP CT1)  
%          
%         if CT_iter == 1 
%             GMF = 1; 
%              
%         elseif CT_iter == 2 
%             GMF = 1+(CTPDES-CT)/(5*CTPDES); 
%              
%         elseif CT_iter > 2 
%             GMF = GMF_last1 + (GMF_last1-GMF_last2)*(CTPDES-CT_last1)/... 
%                               ( CT_last1- CT_last2); 
%         end 
%          
%         G = GMF.*G;                   % GMF = G Multiplication Factor 
%  
%         % ---- Compute induced velocities at control points. eqn 254, p.179 
%         [UASTAR,UTSTAR] = Induced_Velocity(Mp,G,UAHIF,UTHIF,UADUCT,dCirc);           
%          
%         % ------------- Compute thrust & torque coefficients and efficiency 
%         [CT,CQ,CP,KT,KQ,EFFY,TAU,VD] = ... 
%         
Forces(CD,RV,VAC,TANBC,UASTAR,UTSTAR,CoD,G,Mp,RC,Hub_Flag,Rhv,Z,Js,VMIV,CTD); 
%         
%         % ---------------------------------- Prepare for the next iteration 
%         CT_iter   = CT_iter + 1;           % iteration in the CT loop 
%         CT_res    = abs(CT - CTPDES);       % residual CT 
%         CT_last2  = CT_last1;              % the CT prior to the last CT 
%         CT_last1  = CT;                    % the last value of CT    
%         GMF_last2 = GMF_last1;             % the GMF prior to the last GMF 
%         GMF_last1 = GMF;                   % the last value of GMF        
%         
%     end                                              % (END WHILE LOOP CT1) 



70 
 

%  
% end                                                 % (END IF STATEMENT U1) 
  
% ====================================================== END Coney Function   
% ========================================================================= 
  
  
% ========================================================================= 
% ===================================================== Align_wake Function 
% 
% This function aligns the wake to the given circulation distribution by 
% iteratively computing: 
%   UAHIF,UTHIF   = the horseshoe influence functions 
%   UASTAR,UTSTAR = the induced velocities 
%   TANBIC,TANBIV = the velocity angles 
% 
% ------------------------------------------------------------------------- 
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C.2 Align_wake.m 
function [UAHIF,UTHIF,UASTAR,UTSTAR,TANBIC,TANBIV] = ... 
         Align_wake(TANBIC,TANBIV,ITER,Mp,Z,RC,RV,SCF,Hub_Flag,Rhub_oR,... 
                    G,VAC,VTC,Js,Duct_Flag,rDuct_oR,UADUCT,dCirc) 
         
    % ----------- Iterate to ALIGN WAKE to the new circulation distribution 
    W_iter = 1;                     % iteration in the wake alignment loop 
    W_res  = 1;                     % residual BetaI between interations 
    TANBIW_last = TANBIC;           % the last value of TANBIC 
  
    while W_iter < ITER & W_res > 1e-5                   % (WHILE LOOP WA1) 
         
        % --------- Compute the vortex Horseshoe Influence Functions, p.179 
        [UAHIF,UTHIF]   = Horseshoe(Mp,Z,TANBIV,RC,RV,SCF,Hub_Flag,... 
                                    Rhub_oR,Duct_Flag,rDuct_oR);   
        % ---- Compute induced velocities at control points. eqn 254, p.179 
        [UASTAR,UTSTAR] = Induced_Velocity(Mp,G,UAHIF,UTHIF,UADUCT,dCirc);        
        
        % --------------- Compute tan(BetaI) for the new induced velocities 
        [TANBIC,TANBIV] = find_tan_BetaI(VAC,VTC,UASTAR,UTSTAR,RC,RV,Js);   
       
        % ---------------------------------- Prepare for the next iteration 
        W_iter = W_iter + 1                 % iteration in the BetaI loop 
        W_res  = abs(TANBIC - TANBIW_last); % residual BetaI 
        TANBIW_last = TANBIC;               % the last value of TANBIC 
     
        if W_iter > ITER 
            warning('on'), 
            warning('WARNING: While loop WA1 did NOT converge.'), 
            warning('off'), 
        end  
    end                                              % (END WHILE LOOP WA1) 
  
% ================================================= END Align_wake Function   
% ========================================================================= 
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Appendix D.  Test Case Setup Data 

 PLL OpenProp v2 

Advance coefficient, JS 0.60 

Thrust Coefficient, CT 1.20 

Blade number 5 

Speed (propeller) 150 RPM 

Drag Coefficient 0.008 

Vortex panels (MP) 10 

Diameter (prop) 10 ft 3.048 m 

Diameter (duct) 10 ft 3.048 m 

Speed (ship) 15 ft/s 4.572 m/s 

Thrust 21206 lbf 94328 N 
 

Figure D-1: Test case parameters 
 

 
Figure D-2: OpenProp v2 input GUI for test cases 
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PLL CURRENT SETTINGS (inviscid runs) 
 
 1.....circulation optimum enabled.…T       2.....chord optimization enabled……….F 
 3.....wake alignment disabled…...... F       4.....a = 0.8 meanline for duct….….…...T 
 5.....number of panels.................. 10       6.....hub vortex radius……............. 1.00 
 7.....tip thickness/diameter… 0.0040       8.....Lagrange multiplier.............  ‐1.00 
 9.....max. lift coefficient….….. 0.6000      10.....max. thickness/chord….….... 0.20 
11.....minimum root chord..... 0.1600      12.....enable computed drag coeff…..T 
13.....drag coeff. multiplier….. 0.0000      14.....duct tip gap factor............... 1.00 
. 

PLL CURRENT SETTINGS (viscid runs) 
 
 1.....circulation optimum enabled.…T       2.....chord optimization enabled…...…F 
 3.....wake alignment disabled…...... F       4.....a = 0.8 meanline for duct….……...T 
 5.....number of panels.................. 10       6.....hub vortex radius……............. 1.00 
 7.....tip thickness/diameter… 0.0040       8.....Lagrange multiplier.............  ‐1.00 
 9.....max. lift coefficient….….. 0.6000      10.....max. thickness/chord…….... 0.20 
11.....minimum root chord..... 0.1600      12.....enable computed drag coeff…..F 
13.....drag coeff. multiplier….. 0.0080      14.....duct tip gap factor............... 1.00 
 

Figure D-3: PLL current settings for inviscid and viscid test cases 
 

 

 
Figure D-4: PLL overall input file for test cases 
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Figure D-5: Sample PLL output summary for test case run 
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